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We present results for two different kinds of high-order connections between neurons acting as
corrections to the Hopfield model. Equilibrium properties are analyzed using the replica mean-field
theory and compared with numerical simulations. An optimal learning algorithm for fourth-order
connections is given that improves the storage capacity without increasing the weight of the higher-
order term. While the behavior of one of the models qualitatively resembles the original Hopfield
one, the other presents a new and very rich behavior: depending on the strength of the fourth-order
connections and the temperature, the system presents two distinct retrieval regions separated by
a gap, as well as several phase transitions. Also, the spin-glass states seems to disappear above a

certain value of the load parameter o, aq.

PACS number(s): 87.10.+e, 75.10.Hk

I. INTRODUCTION

Synapses connecting more than two neurons have been
introduced in an attempt to both improve the storage ca-
pacity of existing models [1-6] and to be a simulacrum
of synapses existing in real brains (see [1] and references
therein). Biologically, the idea of multisynapses has a
strong motivation [1]: axon-axon-dendrite connections,
for instance, are relatively common in real nervous sys-
tems and can be described as third-order synapses and
even more intricate connections, involving more than
two axons, may also exist in the brain. However, since
second-order synapses are highly dominant, higher-order
terms should be considered as corrections. As stressed
in Ref. [1], this feature may play an essential role in the
functioning of central nervous systems of superior verte-
brate organisms. Moreover, when some pairwise connec-
tions are close enough they may interact somehow, and
that can also be considered as high-order synapses (al-
though in this case there are only interactions of even
order).

Networks with /V infinite range interacting Ising spins
(S; = *1) associated with the state of the neurons (active
or inactive) are considered to describe learning, storage,
and retrieval of information. Possible configurations of
the network are represented by IN-dimensional vectors
S = (S1,...,5n) and the stored information (memories)
is associated with P of these states, denoted by the vec-
tors &¥, p = 1,...,P. The network load is measured
by the parameter «, usually P/N, and the performance
of a model for attractor networks can be measured by
its storage capacity and its ability in recalling the stored
patterns, in particular, the maximum allowed noise in an
initial configuration and the time needed by the network
to evolve and stabilize at, or near, one of the P memories.

Several works introduced multispin interactions by
generalizing the Hopfield model [7] and Hebb learning
rule by a monomial of degree k¥ > 2 in the Ising spins
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[2,3]. These models have been investigated both analyt-
ically and through computer simulations. Alternatively,
a recently introduced model [4] simultaneously consid-
ers several orders of interactions besides the second-order
Hopfield term. In this paper we present a truncated ver-
sion (hereafter called the truncated model) of that model
and study the effect of the (weighted) first correction to
the Hopfield term. We also investigate the effect of a
Hopfield-like correction [hereafter called the generalized
Hopfield (GH) model] and compare both prescriptions.

The paper is organized as follows: Sec. II defines the
models and in Sec. III analytical and numerical results
are presented. In Sec. IV we summarize and present our
conclusions.

II. THE MODELS

A. The generalized Hopfield model

In order to compare performances, we contemplate
a straightforward generalization of the Hopfield model
(GH) by a polynomial of degree M that considers multi-
spin interactions [2,3], namely

N M
E:—?ZQZmﬁ , (1)
£=2 M

where M is an integer (M > 2), ¢ are real constants,
and the overlap m, between the state of the network S
and the pattern &* is given by

1 N
=1

Here we have high-order terms as corrections (that do not
need to be small) to the original second-order Hopfield
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model. This system has a completely different static and
dynamical behavior from the one that will be defined
in Sec. IIB [6]. Here the higher-order corrections do
not qualitatively change the T = 0 behavior of the Hop-
field network, although the (o, T') phase diagram presents
some new features. The Hopfield network has its perfor-
mance determined by the nature of the local field on a
given neuron S;. This local field has two competing com-
ponents, a signal term that tends to align the spin S; with
a given pattern and a noise term that has a random ori-
entation. A correction to the second-order Hopfield term
may then act in two different ways: it enhances the signal
term and/or it decreases the noise one. Also, the joint
analysis of both terms yields an estimate of the critical
capacity of the net: the lowest-order interaction (£min) in
the energy function is the most relevant contribution for
the cross talk noise from the high patterns implying that
the maximum number of patterns that can be embedded
is O(IN%min=1). Thus, the presence of the second-order
term implies that the maximum number of patterns that
can be stored is proportional to N [6,8].
The learning rule, for any £ > 2, is

Ji]H---i, (P+1)= Jz{{v--i, (P) +

€e P+1eP+1  ¢P+1
NE-154u iz i

3)

Here one has the full symmetry of indices and all connec-
tions are symmetric. Note that in a more general case,
the weights could be considered different for each pattern,
€¢ = €¢(p), generalizing the model studied by Viana [9].

This model presents an overall behavior qualitatively

]

B=N{1-Ymd 3 mimd, o
1231

p1<pz

Notice that, although the first nontrivial term is the Hop-
field energy function, the higher-order terms are differ-
ent from any previous model because they contain mixed
memory terms. Also, since we have the Hopfield term
along with higher-order ones, we expect that the number
of patterns that can be stored is O(/N). We now define an
energy function by neglecting the constant zeroth-order
term and considering the next M terms (M < P). This
energy function, after introducing weights and renormal-
izing it by a factor 1/2, reads

Z mlztl miz e mizu . (6)

M
N
FE = ? Z(—1)£&‘2£
£=1 s <o <py

Equation (6) defines a model that can be regarded as the
Hopfield model (£ = 1) plus correction terms. Different
from the previous case, here one cannot have e = 0
because the remaining terms are mixtures and no pattern
can be retrieved only with them. In what follows we
consider only the first correction to the Hopfield term
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similar to the standard Hopfield model at T' = 0. For
a < a, the retrieval quality is good (m ~ 1) and the
size of the basins of attraction decreases with a. Also,
if the initial state is out of the basin of attraction, the
mean convergence time grows as the network increases,
while inside the basins just one or two steps are enough
[6,10]. Underlying this similarity is the fact that the loss
of retrieval abilities due to an overload of the network
originates in the same mechanism: the noise term over-
whelms the signal one when a > a..

B. The truncated model

The complete energy function of a model previously
proposed [4], with all orders of interactions (up to 2P),
for a network storing P patterns is

E:Nﬁ(1—mﬁ) . (4)

This energy function is proportional to the product of
the Hamming distances between the network state S and
the patterns £&* and their inverses —&#. From Eq. (4)
it is clear that E(S) > 0 (if S = &*, for any u, the
equality holds). It means that, no matter how large « is,
the patterns are always global minima of E. A complete
discussion of the phase space landscape in the a — 0
limit as well as simulation results for a # 0 can be found
in Refs. [4,5].

The multi-interaction nature of Eq. (4) becomes evi-
dent when it is displayed as

A+ (EDP Y mleeml | (5)
p1<-<pp

(M = 2). Equation (6) can then be rewritten as (g2, =
d1e + €d2¢)

1 € T
E=— z; JijSiSi + 5 'JZ’;lJijk,S,-sjsks, NG

The learning rule for the second-order couplings J;; is
the Hebb prescription [11], Eq. (3). The fourth-order
synapses J}j’kl, on the other hand, may be implemented
through the following learning rule:

1 V¢V
I = NS D ektekers (8)

pFEY

and when a new pattern is learned,
€
JEa(P+1) =I5, (P) + ﬁ-]ij(P)&foxPH , (9)

where £+ is the (P + 1)th pattern to be taught to the
net. Equation (9) may be regarded as the multisynapses
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described in the Introduction, with the last term being
the action of two axons upon a binary synapse. Notice
that for P = 1 this model is equivalent to the standard
Hopfield model since the fourth-order synapses do not
exist. Note that while the pairwise connections are sym-
metric, i.e., J;; = Jj;, the fourth-order connections do
not present full symmetry under all possible indices in-
terchange (only 7 <+ j and k <> I). These couplings can
be symmetrized if they are rewritten as

1
Gk = 3 (Jigkt + Jigei + Jigat) (10)

and hence the energy (7) is a Lyapunov function for the
dynamics

S;(t+1) =sgn (Z Ji; S;(t)

e 3 TS5 (1) S ()5S, (t)) (11)

gkl

and the use of the statistical mechanics tools is al-
lowed. One should also notice the importance of the
self-couplings here. For instance, the couplings J;;x; and
Jijkr give rise to contributions to the energy of the same
order as the couplings J;;, which does not happen in the
generalized Hopfield model. This can be easily seen if
one rewrites the couplings as

1
Jiide — 5 - (12)

1
JIT —
2 1

ijkl = 2N
Then, for the self-couplings mentioned above,

«

T « o
Ji 2N

= —J
ikl 2N kl

Jk[ ~ Jkl N (13)

1
2N?
where the factor N~! is compensated by a sum over sites
(i) in (7). Notice that the contribution from JZ , is neg-
ligible.

A previous numerical simulation [6] for € = 1 shows a
continuous transition from the retrieval phase to a nonre-
trieval one at 7' = 0. The basins of attraction seem to be
large and a independent: m§ (the minimum initial over-
lap that allows retrieval in the thermodynamic limit) is
~ 0.1 for all @ < a.. The mean convergence time (T') (the
average number of whole network updatings required to

fr=- é(l—ew;mi— 32“3’”?5" Zy2+z”:tumu+%1n[1—ﬂ(1-6y)(1—q)]~—
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reach a stable state) increases with o and, for nonsmall
values of a, does not depend on the initial overlap mg.
Long convergence times and large dispersions on its av-
erage values are often related to the irregularity of phase
space around the memories [10] (existence of spurious
states). However, this interpretation is only valid when
the stored patterns are at, or very near, the bottom of the
basins of attraction (m ~ 1). Since the transition here
is continuous, for large values of « this is no longer true:
initial states with overlap mg with the chosen pattern lay
on the surface of a hypersphere of radius proportional to
1 —mg centered at the pattern. On average, the distance
in the phase space from this surface to the bottom of the
basin of attraction is the same as the distance from the
memory to the energy minimum, independently of mg.
Consequently, the convergence time does not depend on
mgo. For small values of a, on the other hand, the re-
trieval quality is good (m =~ 1) and a small decrease in
the convergence time is observed as my increases [6].

III. MEAN-FIELD THEORY

A. The free energy and saddle-point equations

The mean-field analysis is performed by means of the
standard techniques introduced by Amit, Gutfreund, and
Sompolinsky [12]. In the GH model, the cross talk noise
is governed by the second-order term while the fourth-
order term contributes only to the signal term. On the
other hand, in the truncated model there is a contribu-
tion from the higher-order terms (for instance, from the
self-couplings mentioned in the preceding section) to the
overall noise due to microscopically overlapping patterns.
Up to the fourth order (g2 = 61¢ + €02¢), the truncated
energy function can be rewritten as

2
Ne
]4 .”2
N+ 4 (z: M) ?

N o Ne
E=-3 2. mi— 7
u u

©

(14)

and the free energy per neuron can be obtained using
the replica trick. After assuming that the replicas are
symmetric and taking the limit of zero replicas we get

1 aq(l —ey)

21-pB(1—-ey)(1-q)

+ %aﬂr(l —-q) — % « In 2 cosh[B (t -+ a'rz)] >> , (15)

where y is introduced to linearize the last term in Eq. (14) and the variables t,, ¢, and r are usually introduced to
linearize the nonlinear terms. The symbol {{ )) stands for two averages: over the finite number of patterns which may
condense and over the Gaussian variable z, related to the infinite number of microscopically overlapping memories.

The saddle-point equations are
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= (€ tanh[B(& - t + Varz)]) , (16)
t,=(01—eyym, + 6m3 (17)
q= «tanhz[ﬁ (t £+ arz)]>> s (18)
1—¢y 2

"‘q[l—ﬁu—ey)(l—q)] ’ (19)

— S m2 Bl —ey)(1-q)*
v e = o 20

Analogously, for the GH model the free energy is
_ 1 eomt I I PPN S

+ iaﬂr(l -q) - E (( In2cosh[B (t-& +Varz)])) , e2#0 (21)

and the equations to be solved are the same as in the
original Hopfield model [12], except for t,,. The equations
for m and q are the same as Egs.(16) and (18) and ¢, and
r read (here we do not have y)

1 M
=5 D eetm!iTt, (22)
=2
r=—-2% e 40. (23)
1-8(1-9g) ’

The sets of coupled nonlinear equations given by Egs.
(16)—(20) and (16), (18), (22), and (23) are numerically
solved in Secs. IIIB and IIIC in the case where the
network presents a macroscopic overlap m with one of the
memories (m, = mdy,). Since we are mainly interested
in the properties of the truncated model, results for the
GH model will be given when they differ from the original
Hopfield model or when comparing both models.

B. The T = 0 limit

The T = 0 (8 — oo) limit of the saddle-point equations
of the truncated model is

t
m = erf( 2a'r) , (24)
t=(1—ey)m+em®, (25)
. 1—e¢ey 2
T [1—0(1—61/)] ’ 29
y=m"+ (1 _ Ey)2 ) (27)

[ 2 2
¢ amr P ( 2ar> ’ (28)

where ¢ — 1 and C = (1 — q). These equations are
numerically solved for several values of a and £ and the
results are compared with the simulation whose details

are presented later. We found essentially two different
regimes, depending on the value of . For large ¢ (~ 0.5)
the overlap m decreases with a, going monotonically from
1 down to zero at af (¢), signaling a second-order phase
transition. As e decreases (~ 0.36), the overlap presents
a local minimum, before finally going to zero at a (¢).
If e < e, ~ 0.3587, the minimum yields a gap separat-
ing two retrieval regions. These results are illustrated in
Figs. 1 and 2 and summarized in the T' = 0 phase diagram
of Fig. 3. The critical values aX(¢) are associated with
second-order transitions at 7' = 0. The gap is delimited
by the lines a (¢) and o (g), which meet at an endpoint
nearby (0.3543,0.7784) (see Fig. 4): the left border is al-
ways given by o/ (e) while the right border is defined by
a (€) (second order) for e < 0.3543 and by o (e) (first
order) for 0.3543 < &€ < 0.3587. As e approaches zero,
the gap width between the first and second retrieval re-
gion A = a_ — o, goes to infinity and for negative values
of € only the first-order transition associated with o/ (¢)
is present (see Fig. 3). Near ¢, the behavior of the model

1.0
08|
E 0.6
0.4

0.2

0.0

FIG. 1. Overlap versus a for the truncated model and
e = 0.3,0.36, and 0.5. When ¢ — 0", then o, — 0.138
and o — oo, recovering the original Hopfield model.
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FIG. 2. Overlap versus a for the truncated model for
€ = 1,2,5, and co. The retrieval quality decreases for in-
creasing values of € and as € = 0o, . — 2/m. The circles are
the results for the numerical simulation using N = 512 (see
text).

is very complex near the gap and the effects of replica
symmetry breaking (RSB) should be taken into account
in order to decide what kind of critical points actually
exists. Apparently (in the replica symmetry approxima-
tion) there is a critical point at (e, @) ~ (0.3492,0.833),
where the first-order line ceases to exist, and an end point
nearby (0.3543,0.7784) where both lines (first and second
order) cross (see Fig. 4). It must be emphasized that the
retrieval solution is unstable in this limit (T" = 0), as can
be seen by the negative value of the entropy

of «a
So = 6% == =——In[1-C(1-ey
_E C(l - Ey) (29)
21-C(1—ey)
15
015
m=0 010 |
.
0.05
10 — + 0.00, 2 1 [
. Oc €
5 \\\Eopl
5 m=0
o — e
Oc —. m=0 )
%1 0.2 0.3 ’ 0.4

FIG. 3. The T' = 0 phase diagram for the truncated model.
For € > e. ~ 0.3587 the gap A = a_ — a. disappears while
for £ — 0, the gap A — 0o as 1. The lines af () are second
order while a(¢) is first order. The dashed line (eop:) is the
value of a # 0 where the peak (m = 1) occurs. Inset: the
values of a at the first-order transition (o) for € < 0.

0.9

CRITICAL POINT

ENDPOINT
07

0.5

0'3‘32

FIG. 4. Region near the point where the gap appears. The
dashed line is second order while the solid one stands for first
order. The line o ends in a critical point at ¢ ~ 0.3492
and both lines cross at an end point at € ~ 0.3543. Inset:
overlap versus a near the critical point showing the second
first-order transition for ¢ = 0.3493,0.3492, and 0.3491 (from

“left to right).

The numerical values of the entropy are larger than
in the Hopfield model, possibly indicating that the ef-
fects of RSB are stronger here. There is a range of ¢,
0.3492 < € < 0.3543, where the system suffers up to four
phase transitions (two first and two second order) since,
for a fixed value of €, as « is increased it crosses twice
the line o,. The richness of this phase diagram deserves
a separate study including the analysis of the stability of
the solutions as well the effects of RSB, mainly in this
low temperature region, but it is beyond the scope of
this paper. The peak in the second retrieval region oc-
curs because the noise in the Hopfield term of the local
field in Eq. (11) is completely compensated by the noise
generated by self-couplings in the fourth-order term when
€ =y~ ! (see discussion below). For negative values this
never happens since 1 + ||y is always positive (y is pos-
itive defined).

The points where m continuously approaches zero
[m ~ |a—aZ(e)|/? as a = aF(e)] , aZ(e), are obtained
by expanding Egs. (24)—(28) for small m:

1 2\’
af(e):(ﬁi\/;> . (30)

For £ > ¢, there is only one transition at a} (¢), as can
be seen in the T' = 0 phase diagram (Fig. 3), and the
critical value of a is a decreasing function of e. Two
different retrieval phases appear for € < €, and when the
right border is second order, given by a_, the width of
the second retrieval region is

A'=af(e)—a7(e) = 4\/6271_ . (31)

As ¢ — 0, A goes to infinity as e~ and A’ as e~1/2,

Thus, when the truncated model recovers the Hopfield
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model (¢ — 0), the location of the second retrieval region
in the a axis goes to infinity and o — 0.138.

When € — 0o, the solution for m can be obtained as a
function of « and it reads

m = erf ( lln —2—~) (32)
2 am

af(c0) == . (33)

and

In this limit case, the system behaves suitably as an as-
sociative device (m =~ 1) only if the number of embedded
patterns is finite (o = 0).

It is also possible to obtain the location of the maxi-
mum value of m in the second retrieval region: the values
of a that allow m =1 in (24)—(28) are a = 0 and

_1—5
T e

o (34)
At the peak the noise from the high patterns (measured
by r) goes to zero because ¢ = y~! (and since y is posi-
tive defined, this only happens for positive ). Thus, the
contribution from the second-order term does not con-
tribute in the peak and one shall take into account the
next (fourth order) term. This allows us to introduce
an optimal learning rule by choosing the weight € as the
value that satisfies (34).

The above results can be qualitatively understood
through a signal to noise analysis. The local field act-
ing upon the ith neuron when the system is recalling the
first pattern is

hi:(l—ae)ﬁil—%(l—ae—s)%z Z greles

u>1 5 (#1)

(35)

where we considered the contributions from both two and
four neuron couplings in Eq. (7). The increase in ¢ has
then two effects: it acts both on the signal and noise
terms. Depending on the value of €, an increase in «
may either suppress the signal or the noise term. When
€ is small enough, the sum in Eq. (35) may overwhelm
the signal term and we have a Hopfield-like mechanism
of suppressing retrieval abilities. In this case the overall
behavior is qualitatively similar to the second-order Hop-
field model, as in the GH model. This also corresponds
to the first retrieval region for € < £.. On the other hand,
when € > €., together with a decrease in the noise term,
one can also observe a detectable decrease in the signal
term with increasing o when in the second retrieval re-
gion. Now the mechanism of loss of retrieval ability is
not due to an overwhelming noise term, but to the an-
nihilation of the signal one: the energy barriers around
the minima are decreased. A similar effect is observed in
the complete model [4]. This explains the qualitatively
diverse behavior of the network in this region. Also, the
second (noise) term has zero mean and variance equal to
0? = a(l—ae—¢)?. An important result is that the vari-
ance is zero if @ = 0 or @ = (1—¢)/e. These are the points
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where the retrieval is perfect (m = 1); higher-order noise
terms, which we did not write, have dispersions at least
O(N~1) times smaller. Also, as for increasing values of &
the coefficient of the signal term 1 — ae changes signal for
decreasing values of a, explaining why the critical value
of a decreases.

To verify these results we performed zero temperature
simulations with network sizes up to 512 neurons. The
steps are the following: one of the embedded memories
is chosen as the initial state and a spin is (sequentially)
flipped whenever this lowers the system energy. This pro-
cedure is repeated until a stable fix point is reached and
the final overlap m with the chosen memory is measured.
The averages were taken over five different sets of pat-
terns and the number of runs in each set were 200 and the
sizes were N = 128,256, and 512 neurons. In Fig. 5 we
can see the final overlap m versus a for € = 0.3, clearly
showing the existence of the gap. The results for e = 1
can be found in Ref. [6]. As in other models, when com-
pared with the mean-field calculations, the simulation
yields some discrepancies (mainly near the transitions),
which are in part due to the replica symmetry instability
at T = 0 and supported by the negative entropy at zero
temperature obtained with the replica symmetry ansatz.
Also note that the remanent magnetization above a for
e = 0.3, m ~ 0.1 is lower than the one found for the
Hopfield and GH models (m ~ 0.2) and, as can be seen
in Fig. 2, is a decreasing function of €.

A final remark concerning the free energy of the trun-
cated model at T' = 0 is that the retrieval states are
global minima for all values of a below o} in the trun-
cated model if ¢ > .. For € < e, there is a range
of « in the first retrieval region where they are local
minima (metastable): ay < a < al (in the second re-
trieval region they are always global minima). For ¢ — 0,
apr — 0.05, as expected [12].

On the other hand, in the GH model whose equations
at T' = 0 are [the equations for m and C are the same as

FIG. 5. Overlap versus a for the truncated model and
€ = 0.3. The full curve is the T' = 0 solution of Egs. (24)—(28)
while the points are obtained through numerical simula-
tion (see text). Notice the perfect retrieval at @ = 0 and
a=(1—-c¢)/e ~233.
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(24) and (28), respectively]

1 M
t= 3 nglml_l , (36)

=2
r=(1-C)"% | (37)

the storage capacity is a monotonically crescent function
of both M and e;4. Figure 6 shows «, versus ¢ in the case
€¢ = 03¢ + €844, that is, when only second- and fourth-
order terms are considered. The line aps where the re-
trieval states become global minima and the value of m
at the criticality m.(¢) are also plotted. When € — oo,
the asymptotic value of m.(¢) goes to m.(oc0) = 0.918
and the critical value of o grows as a, ~ €2, which can
be understood as follows. The larger ¢ is, the more im-
portant the fourth-order term and the system capacity
tends to be of order O(NN?) (attained in the absence of
the second-order term [2]), that is, the asymptotic be-
havior of the maximum number of storable patterns goes
as P, ~ €2N. The value of aps also goes as €2 as € = co.
For negative values of ¢ there is a cutoff: below £°"* there
is no retrieval [¢, given by Eq. (36), is null]. For instance,
for the case €y = Ja¢ + €0y, €t = —2/k. As e — e
(from above), . — 0 and m. — 1. In the general case
we have

M
doegte=0 (38)
£=2

defining a hyperplane in the space of the nonzero g,’s.
There is also a cutoff in ajs below which the memories
are never global minima of the free energy. For instance,
for the same case k = 4, e§§* = 2/m — 1 ~ —0.363.

1.6

1.00 “—%——-‘

me(e)
o
3

0 10 20

0 0.4

-02 00 02 04 06 08 1.‘0

-06 -04

FIG. 6. Critical values of o versus € at T' = 0 for the GH
model. The dashed line is the line below which the memories
are global minima of the free energy ay. The overlap at
the criticality m.(¢) is shown in the inset and its asymptotic
value m.(oo0) is 0.918. There is a cutoff for negative values
of € (in this particular case €°** = —0.5), where a. — 0 and
m. — 1 as ¢ — £°* from above. There is another cutoff
below which the memories are never global minima of the
free energy: €5 ~ —0.363.
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C. The T # O case

The GH model presents some universal features that
do not depend on the particular values of ¢, and M. For
instance, the line below which the SG states exist is

Ty=1++a

and e, # 0. The phase diagram for €, = Jz¢ + 04¢ is
presented in Fig. 7 (¢ = 1 since the qualitative features
do not change with €). There are three relevant lines: Ty,
given by Eq. (39), signaling the appearance of SG (spin-
glass) states; Thr, where the retrieval states (m # 0) first
appear, and finally 7., where the retrieval states become
global minima of the free energy. At o = 0, Ty and Ty
do not meet, implying that there is a transition between
the retrieval and paramagnetic phase also for small values
of a. This phase diagram is similar to that for the Q-
state Potts neural network model [14], due to a formal
equivalence between multistate neurons and binary spins
with diluted multispin interactions [15].

The SG phase is reentrant and hence the maximum
possible value of a is not at T = 0 (a. ~ 1.556) but
at a nonzero value of T: a*** ~ 1.566 for T' ~ 0.126.
The degree of reentrance depends on e: in the Hopfield
limit (e¢ = dg¢) it is very small [13]. As a consequence,
a small amount of noise improves the storage capacity of
the system. This can also be observed in the behavior
of m with T near the reentrant region: the overlap first
increases before decreasing, indicating a small improve-
ment with thermal noise. These effects may be an artifact
of the replica symmetry (supposed to be stronger near the
reentrant region): o is believed to be a lower bound
for the actual T' = 0 critical capacity obtained when the
replica symmetry is broken (the reentrant phase would
then disappear). In other words, of*SB > o™** which is
supported by numerical simulations in the case ¢ = 1 [6].

The phase diagram for the truncated model with the
lines Ths and T, for € = 1 is shown in Fig. 8. In Fig. 9

V62,M N (39)

"0.0 05 1.0 1.5

FIG. 7. Phase diagram for the e = 1 GH model. Note the
strong reentrant behavior for both 7. and Tas. The line T,
is the same for all values of ¢ and M. Notice that in this
case there is a transition between the retrieval phase and the
paramagnetic one for small a.



48 NEURAL NETWORKS WITH HIGH-ORDER CONNECTIONS

1.0

FIG. 8. Phase diagram for the truncated model with ¢ = 1.
Below the line T we have m # 0 solutions (retrieval states)
and these states become global minima of the free energy
below T. (dashed line). Notice that there is only one retrieval
region and no reentrant phase.

the line Ts is shown for two values of £: 0.36 and 0.3.
For £ > €, the retrieval states are always global minima
of the free energy for low temperatures, although for ¢ <
€. they may become local minima in the first retrieval
region. For all values of e and a =0, Ty =Ty =T = 1.
Nevertheless, for a # 0, the qualitative features of the
phase diagram depend on ¢, different from the GH model.
When ¢ = 1 (Fig. 8), Ta decreases monotonically and
there is no reentrant phase. As € decreases, the T line
develops a minimum, implying that for some range of
temperatures there are two retrieval regions (e.g., for ¢ =
0.36, 0.086 < T' < 0.202), as shown in Fig. 9. For even
smaller €, the minimum becomes a gap (Fig. 9) and the
first retrieval region is reentrant. Also, the introduction

08

=
o5
04

0.2

0.0

FIG. 9. The line T for the truncated model with e = 0.3
and 0.36. In the latter case, it already shows the structure
of two retrieval regions, although they are still connected.
There is a range of temperature in which we have two retrieval
regions: 0.086 < T' < 0.202. For € = 0.3 both regions separate
and the first retrieval region is reentrant.
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of thermal noise in the system decreases the value of & at
which m has a maximum in the second retrieval region.
At T = 0 there are three phase transition lines in the
g-a plane: one first order ol and two second order o
(Fig. 3). For T # 0, all three phase transition lines are
first order.

The temperature at which the SG solution (m = 0,q #

0) continuously disappears (g — 0) is

1 o
Ty(a,e) = L\/E\/; [(1—ce)14++Va)—1] . (40)
These lines are shown in Fig. 10 for several values of e.
From the above equation we can see that T(0,¢) = 1 for
all values of ¢ and for ¢ = 0 one recovers the Hopfield
line Ty(a,0) = 1 + y/o. The line Ty, for € # 0, goes to
zero at (see inset of Fig. 10)

a9=%<1-,/1+§) : (41)

The same happens in the pseudoinverse model [16], al-
though in that case the transition is discontinuous and
ag ~ 0.363. Although there is a solution with ¢ = 0 for
the SG phase along the line o = £71, the critical line oy,
where the SG phase disappears, is such that oy < 7!
(see Fig. 10, inset).

We performed a numerical simulation to verify whether
there is or is not a value of a above which the number
of spurious states suffers a sudden decreasing. Different
from the simulation presented in Sec. III, here the initial
state is chosen at random and, after the system reached a
stable state, one searches for the memory with the max-
imum overlap with that state. The idea is that if the
system starts from random positions, the final state is
either one of the embedded memories or some spurious
state, if any. In order to quantify the results we define
the following quantity:

FIG. 10. Transition temperature for the SG solutions T,
for several values of € in the truncated model. As € — 0, one
recovers the Hopfield line Ty = 1 + /. In the inset we show
the points a, where T, = 0, as well as the line ¢ ™' (see text).



4068
0.25
0.20 e N=128
m N =256
015 e = 0_5
010
0.05
0'000.0 0.1 0.2 0.3 04

a/OCc

FIG. 11. Simulation results for M = { Mmg=1 — Mris ))
versus a/a. for the truncated model and € = 0.5. The
maximum increases with the size N of the network. For
0.5 < a < ac ~ 4.893, M = 0 signals the low occupancy
of the phase space by the spurious states.

M= « Mmo=1 — Mris » ) (42)

where m,;; is the mean final overlap when the initial
state is random and Mm,,—; is the mean final overlap
when the initial state is one of the memories. The sym-
bol { )) stands for average over several sets of patterns
and initial states. Notice that this quantity is propor-
tional to the fractional “occupation” of the phase space
by the basins of spurious states. Also, if @ > a., there is
no memory retrieval and this quantity yields no relevant
information. The simulation results for the truncated
model with € = 0.5 are presented in Fig. 11: M = 0 for
a = 0 and for a roughly above 0.5. This result supports
the analytical prediction of the disappearance of the SG
states above a given value of . However, the agreement
is only qualitative since the predicted value of ag4/a. for
€ = 0.5is 0.2. We expect this difference to be an artifact

"0.0 02

0.4 0.6
o/ Oe

FIG. 12. Simulation results for M = ( Mmy=1 — Mris ))
versus a/a. for the Hopfield model. Notice the linear behav-
ior below a..
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FIG. 13. Simulation results for M = {( Mmg=1 — Mris )
versus a/o. for the GH model and € = 1. As in the original
Hopfield model, the phase space occupation by the spurious
states grows with both a and N, although for small values of
a it seems to have a minimum.

of replica symmetry instability at low temperatures. For
the sake of comparison, M is also shown for the Hop-
field and GH models, Figs. 12 and 13, respectively. In
both cases, below a., M seems to increase both with «
and N. For the Hopfield model, Fig. 12, the M de-
pendence on « is linear, the exponent depending on N.
For ¢ = 1, M attains a minimum for small o and grows
for increasing values of both a and N. Thus, except for
the truncated model, the spurious states dominate the
phase space landscape either by its increasing number or
by increasing basins of attraction.

IV. CONCLUSIONS

We compared the effect of two different fourth-order
corrections to the standard Hopfield model by consider-
ing two learning rules and investigated their behavior cal-
culating the retrieval capabilities with and without ther-
mal noise. The phase diagrams for both models were pre-
sented, and the strikingly different behaviors presented
by them come from the nature of the fourth-order con-
nections, which may or may not present mixed memory
terms.

The original nontruncated model [4,5] showed an im-
proved performance due to a strong reduction of spurious
states, with the consequent enhancing of the load capac-
ity. The limit of the storage capacity of the network
originates in the lowering of the energy barriers between
memories and not in the dislocation of the energy minima
from the patterns; the retrieval is then always perfect at
T = 0. However, the order of the couplings (and their
number) increases with P such that the ratio of informa-
tion per synapse decreases.

Here we introduced a truncated model that shows a
very rich behavior, summarized by the many phase di-
agrams presented in preceding sections. Besides several
phase transitions, either first or second order, the sys-
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tem may present a gap separating two distinct retrieval
phases. The first one recovers the behavior of the stan-
dard Hopfield model in the € — 0 limit. On the other
hand, in the second retrieval region an increase in the
load of the network acts lowering the signal term. Thus,
the limit in the capacity in this region is then due to
the effect of lowering the energy barriers, different from
the Hopfield model. Possibly the SG phase disappear-
ing for & > ay4 is another consequence of suppressing the
noise: there are no detectable spurious states, which is
supported by numerical simulations. When the gap is not
present, there is only one retrieval region that is more
Hopfield-like for small a but presents a T' = 0 second-
order transition when losing its retrieval abilities. The
second region, when it exists, presents a maximum in the
curve m versus a that allows the definition of an optimal
learning rule for which the system works in the minimum
noise region [see Eq. (35)]: £opt = (14+a) ™. The retrieval
quality is maximum and the capacity of the network is
greatly enhanced [although it is still O(NV) to guaran-
tee that the signal term is not zero]. From the biologi-
cal point of view, the synapses of order higher than two
are corrections to the second-order ones, which is indeed
the case here, since the role played for the fourth-order
corrections depends on the value of € and the network
presents larger load capacities with decreasing . These
results are valid for T' = 0, and the optimal behavior is
expected to hold at low temperatures. It could be in-
teresting to check what happens for higher values of T'.
Also other quantities, for instance, the size of the basins
of attraction and/or the convergence time, still deserve
further investigation.

The effect of the sixth-order term in the expansion
Eq. (6) may also be considered. However, we do not
expect new effects to appear, except for an increase in
the storage capacity (or maybe more than one gap), and
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there may exist at least one pair (¢37%,£gP*) that would
improve the capacity of the model. Furthermore, the
situation when only high-order connections are diluted
is interesting from the biological point of view, but the
dynamics is difficult to treat mathematically [3,17]. A
version of the model in which dilution is present in both
terms is being presently studied [18].

The stability of the solutions together with RSB ef-
fects should be studied, mainly in the 7' = 0 limit, which
surprisingly showed a very rich phase diagram. An inter-
esting problem is to investigate whether the critical point
and the end point merge or not in a tricritical one when
the replica symmetry is broken and then to obtain the
critical exponents near those points.

At last, we should point out that these results still have
an unclear biological relevancy, although they are inter-
esting per se. Maybe other fields that use spin Hamilto-
nians may be benefited by using this model. As an exam-
ple, one can use it as a fitness function in theoretical pop-
ulation genetics [19], where the gap might stand for some
constraints that cannot be satisfied by any species in that
environment or for some forbidden genetical traits.
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